

Table of Contents

1. Introduction .. 1
1.1. How to Use this Guide .. 1

2. Features ... 2
3. Structure of the System ... 4
4. The Language Implemented .. 5

4.1. Extensions .. 5
4.2. Restrictions 5
4.3. Differences 6
4.4. Pragmats ... 6
4.5. Character Set and Collating Sequence 6
4.6. Treatment of Undefined and Skip 6
4.7. Standard Environment Enquiries 7

5. Source Program Format ... 8
5.1. Character Set ... 8
5.2. Stropping Regimes .. 8
5.3. Pragmats 9
5.4. Carriage Control.. 9

6. The Transput System ... 11
6.1. Overview... 11
6.2. Channels Provided .. 13
6.3. Idfs ... 13
6.4. Carriage Control.. 14
6.5. Page Handling ... 14
6.6. Conversion Routines ... 14
6.7. Event Routines .. 15
6.8. Binary Transput .. 16
6.9. Random-Access Files .. 16
6.10. Three Pitfalls ... 17
6.11. Scope of Files .. 18
6.12. Operating System Facilities 18

7. Debugging Aids .. 20
7.1. Tracing .. 20
7.2. Assertions .. 20
7.3. Profiling .. 20
7.4. Traceback ... 20
7.5. Branch Trace ... 20
7.6. Symbolic Dump ... 21

8. How to Run FLACC ... 22
8.1. OS, SVS, and MVS Job Setup 22
8.2. CMS Job Setup ... 23
8.3. MTS Job Setup ... 23
8.4. Input to the Compiler ... 24
8.5. Other Control Lines 24
8.6. Parameters .. 25

9. External Linkage ... 30
9.l. Formal Syntax ... 30
9.2. Informal Syntax and Semantics 30

9.3. Data Types ... 31
9.4. An Example ... 32
9.5. Multi-Dimensional Arrays 32
9.6. I/O Environment .. 33
9.7. Assembler Subroutines ... 33
9.8. Return Codes ... 34
9.9. Re-entrancy .. 34
9.10. Scope ... 34
9.11. Dynamic Loading .. 34
9.12. Parallelism .. 34

10. Exception Handling ... 35
10.1. Introduction ... 35
10.2. New Indicants .. 35
10.3. Non-Interceptible Errors 36
lOA. Range of Handlers .. 37
10.5. Invocation of Handlers 37
10.6. User-Defined Exceptions 38
10.7. A More Structured Approach 38

11. Output from the System .. 40
11.1. Parameter Values .. 40
11.2. The Source Listing 40
11.3. Mode Table .. 42
11.4. Cross-Reference ... 42
11.5. Compiler Error Messages 42
11.6. Compilation Summary....................................... 43
11.7. Terminal Messages ... 43
11.8. Run-time Error Messages 44
11.9. Traceback ... 44
11.10. Level 2 Symbolic Dump 45
11.11. Level 3 Symbolic Dump 45
11.12. Branch Trace ... 48
11.13. Execution Profile .. 48

Appendix A: Standard Prelude ... 49

1. Introduction

1.1. How to Use
this Guide

1

This manual describes the Full Language Algol 68
Checkout Compiler (FLACC). It includes information on
how to prepare, compile, and execute programs written in
Algol 68, using FLACC.

Algol 68 is a language designed by Working Group 2.1 of
the International Federation for Information Processing
(IFIP WG2.1), to be a successor' to Algol 60. Its original
definition was completed in 1968, and a revised definition
appeared in 1974. The language is similar to, but not
completely compatible with, Algol 60, Algol-W, and
Burroughs Extended Algol. Algol 68 is a general purpose
language, and has facilities comparable to those of PL/L

Algol 68 is formally specified by the Revised Report on
the Algorithmic Language Algol 68 by A. van Wijngaarden
et al. (Editors), published in Acta Informatica Volume 5,
Numbers 1-3 (January 1975), and also in ACM SIGPLAN
Notices Volume 12, Number 5 (May 1977). Any references
to the above document are written as RR, possibly
followed by a section number.

Algol 68 is more informally described in the Informal
Introduction to Algol 68 by Lindsey and van der Meulen,
published by Elsevier North-Holland, and in A Practical
Guide to Algol 68 by Pagan, published by John Wiley &
Sons.

FLACC runs on IBM 370 or equivalent machines.

FLACC was developed in consultation with Dr. Barry
Mailloux of the Department of Computing Science at the
University of Alberta in Edmonton. Chion received
considerable support from the U of A Department of
Computing Services.

The most important section is Section 8: How to Run
FLACC. Read this carefully before trying to use the
system. Pay special attention to the parameters.

Section 11, Output from the System, describes the output
you will get back from FLACC. It is best read with a
listing at hand.

The remainder of the guide is a description of finer points
of the system. You should read through it once, to make
later consultation easier.

2

2. Features

The FLACC implementation offers a number of features:

Full language
The full language, as defined III RR, IS

implemented. This includes all of formatted,
unformatted and binary transput, all of the
standard prelude, parallel processing, united
modes, long and short modes, heap allocation, and
other features often left out of implementations.

Extensive debugging aids
These include a fully symbolic dump, a trace
function, a trace of the last thirty branches prior
to termination, profile gathering, a traceback of
active locales at termination, and an assertion
operator.

Extensive error checking
Checks include use of uninitialized or undeclared
values, arithmetic overflows, subscripts out of
bounds, scope checks, deadlock of parallel
processes, and many others. Redundant checks
are avoided by compile-time analysis.

Fast compilation
FLACC has been designed for student 'cafeteria'
batch use. The compiler is completely
memory-resident, and uses no utility files. Some
execution speed was sacrificed to achieve faster
compilation.

Lucid diagnostics
Messages are given in plain English. Diagnostics
pinpoint exactly where the problem is, giving the
coordinates in the source program.

Low cost
FLACC takes advantage of virtual memory, and
avoids loading overlays or using external utility
files. The entire system is reentrant, and can be
loaded once for several runs (the object code
produced is also reentrant). Limits can be
imposed on the cpu time, and lines and pages
printed, to further limit costs.

Load-and-go operation
FLACC runs either as a load-and-go system, or as
a production compiler which produces object
modules. When no object modules are produced,
compilation is faster, and no loading or linkage
editing is needed.

3

Standard program format
FLACC conforms exactly to the IFIP hardware
representation standard for Algol 68 programs.
This eases portability considerations.

Operating system independence
All system-related routines have been gathered
into a single module with a rigidly-defined inter
face. The operating system functions required by
FLACC have been deliberately kept simple and
basic to achieve independence from any particular
operating system. Version 1.6 runs under OS,
SVS, MVS, VM/CMS, and MTS.

4

3. Structure of the System

The FLACC system is composed of three main parts: the
compiler, the run-time system, and the operating system
interface.

The operating system interface is a collection of
subroutines to perform all trans put, timing, loading, and
other functions which require operating system services. It
also performs control card analysis and job batching.

The run-time system is a large collection of routines which
provide the services needed by user programs. These
include memory management, garbage collection, process
scheduling, transput functions, standard prelude operations,
dumping and tracing, error checking, and sundry other
services. The run-time system comes in two versions, one
for load-and-go operation, and one for production use.

The compiler is composed of several phases. The first
phase reads the source text. Next, the parenthesis struc
ture of the program is determined, and, if necessary,
corrected. Now a context-independent parse is done.
After mode information has been consolidated, a
context-dependent parse is performed. At this point,
several important object code improvements are done.
Finally, the data structures required at run time are
produced, and object code is emitted.

5

4. The Language Implemented

4.1. Extensions

4.2. Restrictions

FLACC implements the precise language defined by RR,
and by the IFIP WG2.1 Commentaries published in the
Algol Bulletin, issues 42 and 43.

FLACC optionally supports the following extensions over
standard Algol 68:

FLACC programs can call external subroutines
which use Fortran linkage conventions.

There is a mechanism for trapping run-time
errors. Exception handling allows you to write
'bullet proof' programs.

Overprinting is allowed in transput. This
extension includes the addition of a sameline
routine, and of m alignments in formats.

Variable-length lines are allowed in random -access
files. This extension includes the addition of a
clipline routine, and of a t alignment in formats.

Files may have global scope. This allows more
carefree use of event routines and formats,
without the tedious copying of files in each new
scope. The special rules handling the scope
'violations' associated with this feature are
described in Section 6.

Some extensions have been made to the standard
prelude. These include a slightly more complete
set of elementary trigonometric functions, some
new trans put facilities, and some operating system
enquiries such as time of day. The standard
prelude implemented is described in Appendix A.

Great effort was expended to avoid implementation
restrictions in FLACC. There are, however, the following
two restrictions:

Program source lines must be not more than
65535 characters in length.

A program may consist of at most 65535 lines.

All other restrictions encountered in FLACC are due to
either memory size or processing time limits being
exceeded.

6

4.3. Differences

4.4. Pragmats

4.5. Character Set
and Collating
Sequence

4.6. Treatment of
Undefined and
Skip

There are a few extremely subtle differences between
FLACC trans put and standard trans put. Transput is
described in considerable detail in Section 6.

The only pragmats accepted are those required by the
IFIP hardware representation standard. These are RES,
UPPER, POINT and PAGE. These pragmats are described
in Section 5.

The character set used internally is EBCDIC as defined
for the IBM TN and Tll print trains (see IBM Form
GX20-1850, the 'yellow card'). The TN EBCDIC collating
sequence is used for character and string comparisons.
There are 256 distinct character values.

Local installations may change the definition of square
brackets and vertical bar ([,], I). The distributed version
places these characters at hexadecimal AD, BD, and 4F,
respectively.

The character set allowed for program text is exactly that
required by the IFIP hardware representation standard.
This character set is described in Section 5.

RR specifies many situations which lead to 'undefined'
results. In FLACC, nearly all of these situations cause
termination with an error message. The two most
important exceptions to this rule are the treatment of
SKIP, and collaterality.

SKIP yields some value which can be manipulated without
error. Therefore, if SKIP is assigned to a tag, that tag is
considered to be initialized. The exact value of SKIP is
not defined. In FLACC it has the property that it is
'almost always wrong'. Thus use of SKIP often leads to
'obviously wrong' results.

Collaterality poses a much more important problem. The
rule of collaterality leaves undefined the order in which
some operations are done. The most widespread example
is the order of evaluation in procedure argument lists, and
in formulas. Choosing different orders can result in
different results if there are side-effects. FLACC always
picks a consistent ordering, except in parallel clauses,
where random scheduling between tasks can be requested.

FLACC does not allow the use of un initialized tags or

4.7. Standard
Environment
Enquiries

7

variables. FLACC does not initialize all values to SKIP, as
can be inferred from RR.

Algol 68 provides for several predefined values which
describe the implementation. The values FLACC assigns
to these are given below.

FLACC implements two lengths of INT, REAL, BITS, and
BYTES. Extra LONGs and SHORTs may be given, but
have no run-time effect.

INT int lengths = 1,
INT int shorths = 2,
INT int width = 10,
INT short int width = 5,
INT max int = 2**31-1,
SHORT INT short max int SHORTEN (2**15-1),
INT real lengths = 1,
INT real shorths = 2,
INT real width = 16,
INT short real width = 6,
REAL max real = about 7.237* 10**75,
SHORT REAL short max real = about SHORTEN

(7.237* 10**75),
INT exp width = 2,
INT short exp width = 2,
REAL small real = about 2.220* 10** -16,
SHORT REAL short small real = about SHORTEN

(9.537* 10**-7),
INT bits lengths = 1,
INT bits shorths = 2,
INT bits width = 32,
INT short bits width = 16,
INT bytes lengths = 1,
INT bytes shorths = 2,
INT bytes width = 4,
INT short bytes width = 2,
INT max abs char = 255,
CHAR null character = REPR 0,
CHAR flip = "T",
CHAR flop = "F",
CHAR errorchar = "*-
CHAR blank = - -;

8

5. Source Program Format

5.1. Character Set

5.2. Stropping
Regimes

FLACC conforms exactly to the Report on the Standard
Hardware Representation by Hansen and Boom, published
by IFIP in the ACM SIGPLAN Notices, Volume 12,
Number 5 (May 1977). That document defines a standard
means of representing Algol 68 programs. References to
the above document are written as SHR, possibly followed
by a section number.

The following sixty characters are acceptable for program
text:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789
"#$%'()*+ -./:;<=>@[1_1
space

Additionally, the lower case letters are acceptable.
Depending upon the stropping regime (next section), they
may be folded into the upper case letters.

There are no restrictions on the character set used in
comments. String and character denotations may contain
any character except that quotes n and apostrophes (')
must occur in pairs.

It is poor practice to have a string denotation which
contains a line break (newline). To overcome this, SHR
introduces the string break. This consists of closing the
denotation on one line (with a quote), then opening it
again on the next line (with a quote). Depending on the
setting of the BOUNDARY parameter (Section 8), FLACC
may insist on the use of string breaks.

Note that, as required by RR, FLACC allows parentheses
to be used in place of square brackets.

Algol 68 has two classes of symbols or words: bold and
plain. Language keywords, such as IF, are bold.
Operators and modes are also bold. Tags (variable names)
are plain.

Some means is needed to distinguish bold and plain words.
This is accomplished by a 'stropping' regime. (Strop
comes from apostrophe, which was the character used in
many Algol 60 implementations to designate keywords.)
SHR defines three such regimes: POINT, RES, and UPPER.

5.3. Pragmats

5.4. Carriage
Control

9

In POINT mode, a bold word is immediately preceded by a
point (.), and a plain word is not. Case is irrelevant.

In RES mode, the point may be omitted from any of the
sixty-one reserved words (RR9.4.1):

AT, BEGIN, BITS, BOOl, BY, BYTES, CASE, CHANNEL,
CHAR, CO, COMMENT, COMPl, DO, ELlF, ELSE,
EMPTY, END, ESAC, EXIT, FALSE, FI, FILE, FLEX, FOR,
FORMAT, FROM, GO, GOTO, HEAP, IF, IN, INT, IS,
ISNT, lOC, LONG, MODE, NIL, 00, OF, OP, OUSE,
OUT, PAR, PR, PRAGMAT, PRIO, PROC, REAL, REF,
SEMA, SHORT, SKIP, STRING, STRUCT, THEN, TO,
TRUE, UNION, VOID, WHILE.

Depending on the setting of the EXTERNAL parameter
(Section 8), the word EXTERNAL may also be reserved.

Case is irrelevant. In order to obtain a plain word which
is in the above list, the underscore C) is provided as a
suffix character. Thus end of file, which would normally
be three bold words, can be written end_oLfile, one plain
word. The underscore is not considered to be part of the
tag. Thus foozle and foozle_ are the same tag.

In UPPER mode, bold words are given in upper case, and
plain words in lower case.

The stropping regime to be used is selected with pragmats
(next section), or parameters (Section 8).

FLACC supports four pragmats: POINT, UPPER, RES, and
PAGE.

POINT, UPPER, and RES select the corresponding stropping
regime, as described in the previous section.

The PAGE pragmat causes the line following it to be
printed on the top of a new page in the listing.

FLACC allows you to put carriage control characters in the
first column of each line of the source program. This is
under the control of the INFORM parameter (see Section
8). The allowed carriage control characters are:

10

skip to new page
triple space

o double space
space single space
+ overprint

Note that lines having + carriage control characters are
treated as comment lines, and are ignored by the compiler.

11

6. The Transput System

6.1. Overview

This section describes the trans put facilities provided by
FLACC. These differ very slightly from those in RR.

Transput in Algol 68 can be as simple or as complicated
as you want to make it. If you don't much care about the
format of your data, then simple get and put calls will
normally do what you want. If you want complete control
over the format of your data, you can have that, too.

Algol 68 does transput (110) to books (datasets or external
files) on a line-by-line basis, although many facilities
ignore line boundaries. Each line is a row of characters.
Lines are sometimes grouped into pages. Thus, a position
in a book is determined by three integers: its page, line,
and character numbers.

There are three important positions in each book: the
current position, the logical end of file, and the physical
end of file. The logical end of file determines how much
data you can read; the physical end of file determines how
much data you can write. Both of these positions are
normally determined by the operating system.

The current position can be moved in two ways. It can
be moved by reading or writing some characters from or
into a line, or by calling one of several layout routines.
These are sameline, newline, newpage, set, reset, space,
backspace, and set char number.

In order to process the contents of a book, you must open
it. This involves declaring a file (which is an internal
structure used to keep track of the book), and calling
either open or establish. open is intended for books which
alread~ exist, while establish is intended to create new
books. establish does different things under different
operating systems. In OS, VS and CMS, establish is
treated exactly like open, except that the last parameter
(line length) is used to set the logical record length before
opening the dataset. In OS and VS, established files must
already exist, or be described as 'new' in the JCL, while in
CMS, they may be created implicitly by the operating
system. In MTS, established files are created if they do
not already exist (which requires an actual idf, see Section
6.3), and are emptied otherwise. (RR defines an
additional function, create, intended to create a book with
default characteristics. However, since one of the defaults

12

is the name of the book (dataset name), FLACC does not
support it.)

When you have finished processing a book, you must close
it. To do this, you call either close or scratch. (RR
defines an additional routine, lock, which prevents you
from reopening the book. However, since none of the
operating systems FLACC runs on supports this feature,
neither does FLACC.)

Another feature of Algol 68 transput is the associate func
tion, which allows you to associate an array of characters
with a file, instead of a book. This allows 'core-to-core
110'.

There are three kinds of transput: unformatted, formatted,
and binary. The first two produce human-readable strings
which represent values, while the last transfers internal
(unintelligible) representations of values. In unformatted
and binary trans put, FLACC determines the layout of the
data. In formatted transput, you determine the layout,
using formats.

A feature of Algol 68 trans put is straightening. This
allows you to input or output arrays and structures as a
whole, with the trans put system breaking them open to get
at the required parts.

You can define some procedures (called event routines)
which will gain control when certain events occur (such as
end of line or end of file). RR also allows you to define
character translations that occur during transput, although
FLACC does not.

In order to model the different kinds of access and
datasets your operating system provides, Algol 68 has
channels. You give a channel when you open a book, and
this selects what operations you can perform on the
contents of the book. As an example, some channels allow
only writing operations, and some allow only sequential
access.

A handy feature of Algol 68 is that when your program
begins execution, three files are already open for you:
standin, standout, and standback. In FLACC, standin
reads from the same place as the compiler so normally you
put your data after your program; standout sends its
output to the same place as the compiler so your output
normally follows the source listing; and stand back is
associated with a 256-character array so you can use it for
conversions.

6.2. Channels
Provided

6.3. Idfs

13

FLACC provides five channels: standin channel, standout
channel, printer channel, sequential channel, and stand back
channel.

standin channel is a read-only, sequential-access channel.
standout channel is a write-only, sequential-access channel.
printer channel is also a write-only, sequential-access
channel, but it supports carriage control characters.
sequential channel is a read-write, sequential-access
channel. stand back channel is a read-write, random-access
channel.

You can call reset on all channels, although you cannot
call it on the files stand in or standout. You can do all
three forms of trans put (unformatted, formatted and
binary) on all channels. You can call sameline on only
printer channel. You can call set and clipline on only
standback channel. All channels can support
variable-length lines (except standback channel under as,
VS, or CMS). There is only one page on standback
channel.

When opening or establishing a book, an idf
(identification) string must be given. In FLACC, there are
two kinds of idfs: logical and actual. Logical idfs are used
to access books indirectly, via names assigned by operating
system commands. Actual idfs are used to access books
directly by their file or dataset name. All actual idfs must
begin with an asterisk (*), which is stripped off by
FLACC.

Null idfs are allowed on only standin channel and printer
channel. These idfs select the input and output datasets
of the compiler, respectively.

In as and VS, logical idfs are DDnames, such as
-SYSOUT'. Actual idfs are not supported in the as and
VS versions of FLACC.

In CMS, logical idfs are also DDnames, while actual idfs
(with the asterisk removed) are paRsed to FILEDEF to
define a (constructed) internal DDname, so the file can be
opened. For example, the terminal may be accessed using
-*TERMINAL', and the disk file TEMP DATA might be
accessed using '*DISK TEMP DATA A (RECFM F LRECL 80'.

In MTS, logical idfs are logical unit names, such as
-SCARDS', while actual idfs are FDnames, such as
-*-P+ -0(5)', or '**PRINT*'.

14

6.4. Carriage
Control

6.5. Page Handling

6.6. Conversion
Routines

In all systems, idfs are translated to upper case before
being passed to the operating system.

The support of carriage control characters on printer
channel is automatic and transparent to the user. When
one of sameline, newline, newpage, or reset is done, the
previous line is written out, and the carriage control char
acter is set for the next line (to +, space, 1, or 1, respec
tively). The same actions are performed by m, I, and p
format alignments, respectively. When a file is opened, its
carriage control character is set to 1.

On channels other than printer channel, newpage has no
apparent meaning. On these channels, newpage performs
the same external actions as newline. That is, the current
line is written, or a new line is read.

An exception to this rule is that newpage will not perform
any external action (will not read or write a buffer), if the
last operation done on the file was a newline. This
prevents empty lines at the bottoms of pages when newline
and newpage are called in succession.

Files which are opened using establish and associate have
the number of pages given in the call. Files which are
opened using open have maxint pages, unless they are on
stand back channel, in which case they have one page.

RR provides for three conversion routines: whole, fixed,
and float. These are intended to fall between unformatted
and formatted trans put in terms of amount of control over
layout versus complexity.

FLACC provides two additional routines: scientific and
convert. Use scientific when you want numbers in
scientific notation with a specific precision (other than the
maximum, which unformatted output gives you). (float
does not always give scientific notation.) Use convert
when you want 'nice, readable' output with a minimum of
fuss; it normally gives the shortest string which represents
its argument.

Two other useful routines are Ipad and rpad. These
routines pad strings to specified lengths using specified
pad characters.

15

6.7. Event Routines FLACC differs from RR primarily in the way it handles
event routines. Under some very obscure circumstances,
they are called in a different order, and a different
number of times.

Input builds strings one character at a time, which are
then converted to the required values. Similarly, output
converts values to strings, then outputs them one character
at a time. Immediately before any character is transput,
an internal routine get good posn is called. It ensures a
suitable current position for the next character. This may
involve calling event routines for the line ended, page
ended and file ended conditions.

Here is a skeleton of get good posn:

BOOl done : = FALSE;
WHilE NOT done DO
IF buffer is empty AND (reading OR on standback

THEN
ELiF

THEN
ELiF
THEN
ELiF

THEN
ELSE
FI
00;

channel)
read in a line
(current page > max page) OR (reading AND

at end of file)
calion logical file end or on physical file end
current line > max line
call on page end
(NOT reading AND current char > max char)

OR (reading AND current char > size of
buffer)

call on line end
done := TRUE

Each time an event routine is called, a check is made to
ensure that the file is still open, and has the appropriate
read/write setting. If an event routine returns TRUE, a
check is made to ensure that either the file or current
position has changed, or that the condition for which the
routine was called has been resolved.

If the file end event routine returns FALSE, the program is
terminated with an error message. If the page end or line
end routine returns FALSE, newpage or newline is called,
respectively.

The char error, value error and format end event routines
are handled as required by RR.

16

6.8. Binary
Transput

6.9. Random-Access
Files

There are no restrictions on when binary trans put can be
done in FLACC; it may be freely interspersed with
formatted or unformatted trans put, and done on any file.

FLACC binary transput behaves like unformatted transput
of rows of characters. The internal representations of
values are transput as byte streams.

The number of bytes transput is as follows:

SHORT INT 2
INT 4
SHORT REAL 4
REAL 8
SHORT BITS 2
BITS 4
SHORT BYTES 2
BYTES 4
SHORT COMPL 8
COMPl 16
CHAR 1
BOOl 1 (zero for FALSE, nonzero for TRUE)
STRING 1 per character

Algol 68 has facilities for handling random-access transput.
These are set, reset, clipline, newline, and newpage.

set moves the current position to any desired point in the
file. reset moves the current position to the beginning of
the file. clipline truncates the current line to the current
character position, and resets the maximum allowed length
to its open-time value, in preparation for writing it out
with a changed length. newline and newpage move to the
next line or page. Since FLACC random-access files have
only one page, newpage is of limited usefulness.

To call clipline from a format, use the t alignment.

Normally, only existing text in a random-access file may
be replaced, and lines cannot have their lengths changed.
However, through the use of clip line, the length of lines
may be changed, provided that the operating system
supports variable-length random-access files. For example,

open(f, -some idr- ,standbackchannel);
set(f, 1 ,5,3);
put(t:c-);
close(f);

changes the third character in the fifth line to c, without
changing any other part of the line. However,

open(f," some idr ,standbackchannel);
set(f, 1 ,5, 1);
clipline(f);
put(f:abc");
close(f);

replaces the fifth line with abc.

17

Note that when the position in the file changes (with a
set, reset, newline, or newpage, the new line is implicitly
read. If any changes have been made to the old line, it is
implicitly written.

In OS, VS, and CMS, FLACC random-access files are the
same as Fortran direct files. That is, they are BDAM
fixed-length datasets, which must be created and filled as
sequential datasets before being used for random access.
FLACC does not use keys; records are addressed by
relative record number. The number is adjusted so that
the first record is number one. If a short line is written
(after using clipline), the operating system interface will
pad it with blanks.

In MTS, line files are used. The position corresponds to
the internal line number (1500 is line 1.5). Lines may be
of variable length. The file may be pre-created
sequentially (using another channel), or may be created
randomly. If it is created randomly, then clipline must be
used for each line, since non-existent lines have a length of
zero when read.

6.10. Three Pitfalls Algol 68 transput has the following three upsetting quirks:

Unformatted input of strings normally leaves the 'current
position at the end of a line, so that subsequent calls to
get result in empty strings being read. This can be
avoided by calling newline between input calls.

Binary input of strings does not work as might be
expected. The string read into is not flexed: its length
remains unchanged. This means that calling getbin with
an empty string (such as one you have just declared)
results in no characters being read.

Scope restrictions on files make it inconvenient to associate
event routines or formats with them. Inevitably, a new
file must be declared in a local environ, and the file
copied. To get around this, FLACC allows (under the
control of the FILECHECK parameter; Section 8) files to be
of global scope, and ignores certain scope violations in
their use. This is detailed in the following section.

18

6.11. Scope of Files When the FILECHECK parameter is in effect (Section 8),
the actions described in this section do not occur.
Instead, files are handled as required by RR.

6.12. Operating
System
Facilities

FLACC allows files to have global scope. This gives rise
to scope violations when event routines, formats and texts
are associated with them. These violations do not result
in termination. Rather, they are noted for later action.

When a local object (an event routine, a format, or a text)
is associated with a file, the locale having the same scope
as the object is flagged. Also, the file is made to refer to
that locale.

When a flagged locale is left (for example, during a block
exit or a jump), all files are checked to see if they refer to
it. If so, then the event routine(s), format(s), or text(s)
associated with the locale are 'reset'.

Event routines are reset by associating the default event
routine with the file. The default event routine always
returns FALSE. When a format is reset, the file is set to
the 'no format' state. When a text is reset, the file is
closed.

FLACC always closes files, and ensures that the last line is
written out, even if you do not close the file, or if the
program terminates abnormally.

FLACC uses a standard, operating system independent
interface to obtain access to operating system facilities.

Version 1.6 of FLACC has three interfaces: MTSINT,
OSINT, and CMSINT. All support memory allocation, job
initialization and batching, loading, timing and lIO.

MTSINT supports line and sequential files. Either
indexed or sequential lIO can be performed on line files,
but only sequential lIO can be done on sequential files.
Both positive and negative line numbers may be used with
line files. Files can be created, destroyed and renamed,
using establish, scratch, and reid!. Files can be accessed
using either logical or actual idfs (see Section 6.3).

OSINT supports QSAM and RECFM = F BDAM datasets.
Partitioned datasets are supported only when the member
names are given in the JCL. Random access files must be
pre-formatted using sequential lIO before being opened for
random lIO, and have only positive line numbers.
establish cannot create a dataset, and scratch and reidf are

19

not supported at all. Only logical idfs are supported (see
Section 6.3).

CMSINT uses the OS simulator, and provides the same
services as OSINT, except that actual idfs are supported
(see Section 6.3).

20

7. De bugging Aids

7.1. Tracing

7.2. Assertions

7.3. Profiling

7.4. Traceback

7.5. Branch Trace

In addition to its extensive
provides several debugging aids.
this section.

error checking, FLACC
These are described in

The trace function is designed to let you optionally print
the values of your variables during execution. It is called
in exactly the same manner as print, but produces output
only if the value of trace flag is TRUE. A tracef routine is
also provided, which is analogous to printf.

The ASSERT operator allows you to place assertions in
your programs. If its operand evaluates to TRUE, then it
does nothing. If, however, its operand is FALSE, it causes
an error termination.

You can gather an execution profile of your program.
After termination, a bar graph is printed which shows how
often each decision point in the program was passed.
Profiling is optional, and is under the control of the
PROFILE parameter (Section 8).

At termination, FLACC optionally prints a traceback
giving the program source location in each active locale.
If there are multiple tasks at termination, a traceback is
given of each one. The traceback indicates clearly the
nesting of calls and tasks at termination. Traceback is
under the control of the DUMP parameter (Section 8).

A table of the last thirty branches taken by your program
is optionally printed when it terminates. These branches
include task switches in parallel programs. This trace
often gives needed information about 'where the program
was'. The branch trace is under the control of the DUMP
parameter (Section 8).

21

7.6. Symbolic Dump Probably the most useful debugging feature of FLACC is
its symbolic dump. Under the control of the DUMP
parameter (Section 8), when your program terminates, the
current values of some or all objects in memory are
dumped. The format of this dump depends on the level
selected by the DUMP parameter.

The level 1 dump consists only of the traceback and
branch trace.

The level 2 dump is an abbreviated dump intended for
beginning students and 'working' programs. It dumps the
values of all simple tags; that is, those which are not
arrays or structures. Strings and semaphores are also
dumped. Tags are grouped according to the locale in
which they are declared. Locales are labelled consistently
with the traceback, so nesting information can be easily
determined.

The level 3 dump is complete. It reflects the state of the
Algol 68 virtual machine exactly. In fact, instructors may
find it useful in teaching how Algol 68 handles values.

In the level 3 dump, all bindings and subnames are explic
itly shown, and all mappings implied by structures and
rows are detailed. Because this would normally lead to a
lot of waste paper, all structured and rowed values are
compressed onto as few lines as possible. This reduces the
quantity of output considerably, while still leaving a fairly
readable dump. As in the level 2 dump, locales are
labelled consistently with the traceback.

22

8. How to Run FLACC

8.1. OS, SVS, and
MVS Job Setup

This section describes how to use FLACC.

Most installations will have a catalogued JCL procedure
for running FLACC. In this case, to run the compiler,
you give the following:

/ / EXEC FLACC,PARM = 'parameters'
/ /SYSPUNCH DO object module dataset
input to FLACC
/*

The SYSPUNCH DO line is needed only if the DECK
parameter is specified.

If your installation does not have a catalogued procedure
for FLACC, or if you are creating your own procedure, the
complete JCL to run the compiler follows:

Iistepname EXEC PGM = FLACC,P ARM = 'parameters'
IISTEPLIB DO DSN=dataset containing

compiler ,DISP = SHR
/ISYSPRINT DO listing dataset, usually SYSOUT=A
I/SYSTERM DO terminal dataset, usually TERMINAL
/ /SYSPUNCH DO object module dataset
I/SYSIN DO input dataset, usually *

The SYSTERM and SYSPUNCH DO lines are needed only if
the TERM and DECK parameters are specified, respectively.

To run an object module, use the following JCL:

/ / EXEC LKEDG,PARM.GO='parameters'
/ /LKED.SYSLIB DO DSN=dataset containing run-time

library, DISP = SHR
/ /SYSIN DO dataset containing object module
/ /GO.SYSPRINT DO output dataset, usually

SYSOUT=A
input to program
/*

Note that GO.SYSPRINT must appear, even if the program
produces no output on standout. GO.SYSIN must be
explicitly supplied if there is no inline input to the
program. Use:

IISYSIN DO DUMMY ,DCB = BLKSIZE = 80

23

8.2. eMS Job Setup Most installations will have a FLACC EXEC file. To run
the compiler in this case, use:

FLACC program (parameters

The program is taken from the file program ALGOL68, the
listing is sent to program LISTING, and the object module
(if any) is sent to program TEXT. If no parameters are
specified, the parenthesis is not required.

If your installation does not have a FLACC EXEC, or if you
are writing your own, then use the following:

FILEDEF SYSIN input description
FILEDEF SYSPRINT output description
FILEDEF SYSTERM TERMINAL
FILEDEF SYSPUNCH object module description
FLACC parameters

The SYSTERM and SYSPUNCH definitions are needed only
if the TERM and DECK parameters are specified, respec
tively.

Here is how object modules are run in CMS:

GLOBAL TXTLIB dataset containing run-time library
FILEDEF SYSIN input description
FILEDEF SYSPRINT output description
LOAD file containing object module
ST ART * parameters

Note that SYSIN and SYSPRINT must both be defined,
even if apparently unused. If the program has no input
from stand in, then use:

FILEDEF SYSIN DUMMY

You may wish to put the GLOBAL command in 'your
PROFILE EXEC. It needs to be issued only once after
IPL'ing CMS.

8.3. MTS Job Setup Here is how FLACC is run in MTS:

$RUN *FLACC SCARDS=input SPRINT=output
SPUNCH = object SERCOM = errors
PAR = parameters

SPUNCH and SERCOM are required only if the DECK and
TERM parameters are specified, respectively.

Here is how object modules are run in MTS:

$RUN object+*FLACCLIB SCARDS=input
SPRINT = output PAR = parameters

In both cases, if SCARDS, SPRINT or SERCOM IS omitted,

24

8.4. Input to the
Compiler

8.5. Other Control
Lines

the terminal is the default. At most installations, the
+ *FLACCLIB is unnecessary, because the interface adds a
$CONTINUE WITH • FLACCLIB RETURN line at the end of
each object module.

In all systems, the input to FLACC is the same, and
depends on the setting of the BATCH parameter. Here is
a two·run job in BATCH mode:

ICOMPILE parameters
first Algol 68 source program

IEXECUTE
data for the first program

ICOMPILE parameters
second Algol 68 source program

IEXECUTE
data for the second program

IEXECUTE
another set of data for the second program

lEND

All control lines start in column one, regardless of the
setting of the INFORM parameter. Case is irrelevant. In
BATCH mode, if no IEXECUTE line is given, execution is
suppressed. A program may be executed several times
with different data by giving more than one IEXECUTE
line. Program data may be terminated by a lEND line,
which is completely optionaL

In NOBATCH mode, there is only one run per job. The
ICOMPILE line is optional, and lEND lines are ignored. A
IEXECUTE line is needed only if data is present.

In addition to ICOMPILE, IEXECUTE, and lEND lines,
FLACC accepts IOPTIONS, ITITLE, ISTITLE, IEJECT,
ISPACE, and IINCLUDE lines. These lines have an effect
only at compile time, except IINCLUDE lines, which are
also interpreted at run time, but only in BATCH mode.

IOPTIONS lines are used to change the values of parame·
ters. The only parameters allowed on IOPTIONS lines are
INFORM, POINT, RES, UPPER, LlBLlST, NOLlBLlST, LIST,
NOLlST, BOUNDARY, NOBOUNDARY, and OUTFORM.

ITITLE and ISTITLE allow you to put titles and subtitles
on your source listing. The portion of the line following
the first character after the ITITLE or ISTITLE is used.
Both types of line cause a page skip in the source listing.
ITITLE lines reset subtitles.

8.6. Parameters

25

IEJECT lines cause page skips in the source listing.

ISPACE lines leave blank lines in the source listing.
Follow ISPACE with a number. If you omit this number,
one is assumed. If too few lines remain on the page, a
page is skipped.

IINCLUDE lines are used to include other files into the
input stream. They can be used both at compile and
execution time, and can be nested. Follow IINCLUDE with
an idf (Section 6) in quotes n.

FLACC accepts many parameters. These can be given in
the parameter to FLACC, or on ICOMPILE and IOPTIONS
lines. Parameters may be in either case, and separated by
blanks, commas or semicolons.

All parameters, except for BATCH, NOBATCH, TERSE,
NOTERSE, TERM, and NOTERM may appear on ICOMPILE
lines.

The only parameters allowed on IOPTIONS lines are
INFORM, POINT, RES, UPPER, LlBLlST, NOLlBLlST, LIST,
NOLlST, BOUNDARY, NOBOUNDARY, and OUTFORM.

The TERM parameter, in conjunction with the LIST param
eter, determines where compiler and interface error
messages go. When TERM is specified, SYSTERM
(SERCOM in MTS) is assumed to be connected to a termi
nal, and error messages are sent there. If LIST is speci
fied, then error messages are also sent to SYSPRINT
(SPRINT in MTS). NOTERM,NOLIST is a special case; here
messages are sent to SYSPRINT in listing format, but
listing titles are suppressed. Error messages sent to the
terminal include a copy of the source line in error.

Parameters accepted are as follows:

TERM, NOTERM
Determines whether compiler error messages are
sent to the terminal (see above).

TIME=xxx.xxx
Sets the amount of execution CPU time allowed
in seconds. Can be abbreviated to T=.

CTIME = xxx.xxx
Sets the amount of compilation CPU time allowed
in seconds. Can be abbreviated to CT=.

26

LlNES=xxx
Sets the number of lines output allowed on
standout during execution. Can be abbreviated to
L=.

DUMPLINES = xxx
Sets the number of lines output allowed during
the post-termination dump. Can be abbreviated
to DL=.

PAGES=xxx ~

Sets the number of pages output allowed on
standout during execution. Can be abbreviated to
P=.

LlNECT=xxx
Sets the number of lines per page in the source
listing, and also in standout output. Can be
abbreviated to LCT=.

SIZE=(min,max,res) or SIZE=amount
Sets the amount of work space obtained during
run. If the first form is used, res bytes are
reserved for system use (buffers and such), and
somewhere between min and max bytes are
allocated as work space. If the second form is
used, amount bytes are allocated as work space.
You can suffix numbers in this parameter with K
to indicate multiples of 1024, or KK to indicate
multiples of 1048576. Can be abbreviated to S =,
or to three separate parameters, MN =, MX =, and
MR=.

INFORM = (bgn,end,asa)
Sets the ipput line format. bgn sets the first
column used by the compiler, and end sets the
last one used. asa must be either A or N, and
indicates whether the first column of each line
contains a carriage control character. If asa is A,
then bgn must be at least 2. In as, VS, and
CMS, if end is 72, then compiler input lines which
are 80 characters long and whose last four
columns are numeric will have their last eight
columns (73-80) used as sequence numbers, which
will appear in the listing. Using NUM datasets in
TSO, or setting SEQUENCE ON in CMS will
fulfill these requirements. In MTS, line numbers
are used instead of sequence numbers. INFORM
can be separated into three abbreviated parame
ters: 18=, IE=, and IA=.

.
!

27

UPPER, RES, POINT
Sets the stropping regime.

LIST, NOLIST
Determines whether a source listing is produced.

L1BLlST, NOLlBLIST
Determines whether IINCLUDEd lines are printed
in the source listing. LIBLIST is overridden by
NOLIST. Can be abbreviated to L1BL, NOLIBL.

BOUNDARY, NOBOUNDARY
Determines whether tags, comments and string
denotations are allowed to cross line boundaries.
NOBOUNDARY allows this, and conforms to RR
specifications. Can be abbreviated to BOUND,
NOBOUND.

PROFILE, NOPROFILE
Determines whether a run-time profile is gathered.
Can be abbreviated to PROF, NOPROF.

DUMP=x
Sets the level of the post-execution information
provided, following a normal termination. 0
requests no output at all, 1 requests a traceback
and branch trace only, 2 requests a partial dump,
and 3 requests a full dump.

EDUMP=x
Sets the level of the post-execution information
provided, following an abnormal or error
termination. Has the same meaning as DUMP. If
the value of DUMP is greater than the value of
EDUMP, the value of DUMP is used.

OUTFORM=x
Determines the format of the source listing. 1
leaves the source unchanged; 2 produces output
acceptable as UPPER input; 3 produces only upper
case, and underlines bold words; 4 produces only
lower case, and underlines bold words; 5 produces
only upper case, and prints bold words twice; 6
produces only lower case, and prints bold words
twice; 7 produces only upper case, and prints bold
words thrice; 8 produces only lower case, and
prints bold words thrice. Can be abbreviated to
OUTF=.

FILECHECK, NOFILECHECK
Determines whether files
violations. FILECHECK
specifications. Can be
NOFCHK.

are checked for scope
conforms to RR

abbreviated to FCHK,

28

BATCH, NOBATCH
Determines whether one or several programs are
to be compiled.

SCHEDULE=x
Sets the level of parallel scheduling. 0 requests
minimal scheduling; 1 requests round-robin
simulated timeslicing; 2 requests random
repeatable simulated, timeslicing; 3 requests
random non-repeatable simulated timeslicing. If
object modules are to use this parameter, it must
be specified at both compile and execution time.
Can be abbreviated to SCHED =.

XREF, NOXREF
Determines whether a tag cross-reference IS

printed.

MODET ABLE, NOMODET ABLE
Determines whether a table of all modes used in
the program is printed. Can be abbreviated to
MODET, NOMODET.

RUN, NORUN
Determines whether execution is suppressed, RUN
has no effect when DECK is specified.

WARN, NOWARN
Determines whether compiler warning messages
are suppressed.

DECK, NODECK
Determines whether an object module is produced.
If DECK is specified, execution will be suppressed.

EXTERNAL, NOEXTERNAL
Determines whether the external linkage
specifications are allowed. Also determines
whether the word EXTERNAL is reserved.
NOEXTERNAL conforms to RR.

MALIGN, NOM ALIGN
Determines whether m alignments are allowed in
formats. NOMALIGN conforms to RR.

TALlGN, NOTALIGN
Determines whether t alignments are allowed in
formats. NOT ALIGN conforms to RR.

EXTEND, NO EXTEND
Determines whether FLACC extensions to the
standard prelude are recognized. NOEXTEND
conforms to RR.

29

TERSE, NOTERSE
Determines whether the interface prints headings,
the versIOn number, /COMPILE Jines, and
parameter values, If TERSE is chosen, then the
interface will not produce any output.

STANDARD
Selects the 'standard' settings for various parame
ters. When ST ANDARD is selected, FLACC
conforms exactly to RR. The parameter settings
selected are: NOBOUNDARY, FILECHECK,
NOEXTERNAL, NOMALlGN, NOT ALIGN, NOEXTEND,
INFORM = (1,32767 ,N).

The default settings for TERM, LIST, SIZE, and INFORM in
the distributed version depend on the operating system
interface. In OS and VS, they are NOTERM, LIST,
SIZE=(64K,16KK,64K), INFORM=(1,72,N). In CMS, they
are TERM, LIST, SIZE=(64K,16KK,64K), INFORM=(1,72,N).
In MTS, they are SIZE= 128K, INFORM=(1,32767,N), and
NOTERM, LIST in batch, or, at a terminal, either TERM,
NOLIST if SPRINT points at the terminal, or TERM, LIST if
it does not.

The other default parameter settings of the distributed
version are as follows (defaults may vary at different
installations):

TIME=25000, CTIME=25000, LlNES= 100000,
PAGES= 100000, DUMPLlNES=500, LlNECT=60,
OUTFORM=2, DUMP=O, EDUMP=2, SCHEDULE=O,
UPPER, LlBLlST, BOUNDARY, NOPROFILE,
NOFILECHECK, NOXREF, NODECK, NOMODETABLE,
WARN, RUN, EXTERNAL, MALIGN, TALlGN, EXTEND,
TERSE, NOBATCH

30

9. External Linkage

A large body of software exists which, for one reason or
another, was developed in languages other than Algol 68.
Much of this other-language software is in the form of
Fortran-callable subroutine libraries.

FLACC has an external linkage facility which allows access
to Fortran or Assembler language subprograms. This
section describes the types of linkage which are possible,
and the linkage conventions which must be used.

9.1. Formal Syntax The following syntax is appended to the grammar given by
RR. If you are uncomfortable with this definitional
approach, simply skip this part.

9.2. Informal
Syntax and
Semantics

A) EXTERNAL:: procedure FARAMETY
yielding FRET.

B) FARAMETY:: FARAMETER FARAMETY;
EMPTY.

C) FARAMETER:: FODE parameter;
reference to flexible row of character

parameter.
D) FODE:: FOAD; reference to FOAD;

ROWS of FOAD;
reference to ROWS of FOAD.

E) FRET:: FOAD; row of character; void.
F) FOAD:: SIZETY integral; SIZETY real;

boolean; character;
structured with SIZETY real field letter r

letter e SIZETY real field letter i letter
m.

a) strong EXTERNAL NEST unit :
external symbol, external module indication.

b) external module indication:
character denotation;
row of character denotation.

c) * external unit: strong EXTERNAL NEST unit.

FLACC provides for a new language construct called an
external unit. The external unit may be used to call
subroutines which have been compiled by the IBM Fortran
IV (G and H) compilers. The external unit may also be
used to call Assembler language subroutines which follow
standard Fortran linkage conventions.

9.3. Data Types

31

Consider the following:

PROC (REAL) REAL sine = EXTERNAL -DSIN';

In this example, the external unit yields a procedure which
is presumably the Fortran DSIN function. (Note that the
FLACC standard precision corresponds to Fortran double
precision.) The string denotation is an external module
indication, and, in this case, is simply the external name of
the routine.

The mode of the external function is specified by the
(strong) context; thus the following example is invalid,
since the compiler cannot determine the mode of the
procedure:

PROC cosine = EXTERNAL -DCOS-;

Fortran lacks a rich variety of data types: a relatively
small subset of the possible Algol 68 parameter modes can
be passed in a sensible manner. The types which may be
passed to Fortran subroutines are:

INT
REAL
COMPl
BOOl
CHAR

REF INT [, ...] INT REF [, ...] INT
REF REAL [, ...] REAL REF [, ...] REAL
REF COMPl [, ...] COMPL REF [, ...] COMPl
REF BOOl [, ...] BOOl REF [, ...] BOOl
REF CHAR [, ...] CHAR REF [, ...] CHAR

In addition, all other lengths of INT, REAL, and COMPL
are allowed. Note that FLACC does not allow procedure
values to be passed to external subroutines, and that no
means is provided to access Fortran common blocks.

The correspondence between Fortran types and Algol 68
modes is as follows:

Fortran

INTEGER*2
INTEGER
REAL
REAL *8
COMPLEX
COMPlEX*16
lOGICAL
LOGICAL *1

Algol 68

SHORT INT
INT
SHORT REAL
REAL
SHORT COMPl
COMPl
BOOl
CHAR

32

9.4. An Example

9.5. Multi
Dimensional
Arrays

In the following example, four entry points to a common
plotting package are declared for use by a FLACC
program.

PROC VOID plots = EXTERNAL -PLOTS-;
PROC (SHORT REAL, SHORT REAL, INT) VOID plot

EXTERNAL "PLOT';
PROC (SHORT REAL, SHORT REAL, SHORT REAL, []

CHAR, SHORT REAL, INT) VOID symbol =

EXTERNAL "SYMBOL";
PROC (INT) VOID new pen = EXTERNAL "NEWPEN";

This example will not work properly under MTS in
load-and-go mode, because the common blocks needed by
the subroutines will not be merged by the system loader.
Use the DECK option to bypass this problem.

Multi-dimensional arrays are allowed as parameters,
although there is a surprising amount of linkage overhead
involved. The following illustrates why array copying may
be needed:

[5,5,5] INT array3;
REF L] INT array2 = array3 [,3,1;
PROC (REF [,1 INT) VOID zonk = EXTERNAL -ZONK-;
zonk(array2);

The two-dimensional array variable array2 is not
contiguous in memory. There is no clean, transparent way
to deal with non-contiguous arrays in Fortran.

The FLACC linkage interface alleviates the problem by
constructing a compacted copy of the array. The copy is
then passed to the Fortran subroutine. When the subrou
tine returns to the Algol 68 caller, the (possibly modified)
compacted array elements are copied back to their original
locations. This value-result calling convention is used by
Fortran only for scalars. However, the FLACC linkage
interface uses value-result conventions for all variable
parameters.

The FLACC linkage interface also ensures that
multi-dimensional array subscripts are given in the same
order in the Fortran subprogram as in the calling Algol 68
program.

9.6. 110
Environment

9.7. Assembler
Subroutines

33

Normally when Fortran subroutines do their own 110, the
Fortran run-time library (!BCOM) must be initialized. If
you are comtemplating calling such subroutines from Algol
68 you should refer to the Fortran Programmer's Guide at
your installation.

FLACC uses the same linkage conventions in calling
Assembler language subprograms as in calling Fortran
subroutines.

In addition to the Fortran parameter types, Assembler
language subroutines may be passed string variables. An
Assembler language function may also yield a string as its
value:

PROC (REF STRING) STRING reverse = EXTERNAL
"REVERSE";

When a string variable is passed, FLACC uses a two-word
descriptor consisting of a pointer in the first word and the
string length in the second. The subroutine is allowed to
change both the pointer and the length. When returning
a string value, place the address of the descriptor in
general register 0.

Note that REF STRING parameters are passed very
differently from both [J CHAR and REF [J CHAR parame
ters. The descriptor is passed only in the REF STRING
case; otherwise the normal Fortran convention is used.

BOOl values are passed as fullword ° or 1, for FALSE and
TRUE, respectively. FLACC accepts zero or non-zero
results returned in general register 0, and interprets them
as FALSE and TRUE, respectively.

CHAR values are passed as single bytes. When returning a
CHAR value, put it in the high-order byte of general
register 0.

To return a REAL value, place it III floating-point register
0.

To return a COMPL value, load the real part into
floating-point register 0, and the imaginary part into
floating-point register 2.

34

9.8. Return Codes

9.9. Re-entrancy

9.10. Scope

9.11. Dynamic
Loading

9.12. Parallelism

Both Fortran and Assembler language subroutines are
capable of setting the return code in general register 15.
The FLACC procedure return code can be used to obtain
the return code from the last external call. Exercise
caution when using return code within parallel
environments.

For each external unit, FLACC allocates a work word in
the primal environ. The work word is initialized to 0 in a
prelude. On entry to an external subroutine, general
register 2 points to the work word for that subroutine.
The work word is intended for use by re-entrant
subroutines, to store the address of their work areas.

The scope of the procedure value yielded by an external
unit is the scope of the primal environ.

When NODECK and RUN are specified (Section 8), FLACC
loads external units using the dynamic loading facilities (if
any) of the host operating system. The external module
indication may consist of the external name, optionally
followed by a comma and an idf (Section 6) for the appro
priate library. For example:

PROC (INT) VOID control = EXTERNAL 'CNTL,EXTLlS';

If the external module indication does not include a
library idf, the operating system default library is used.
The loader is called separately for each external unit. If
you load a collection of subroutines which share
Fortran-style common sections, you should check with a
systems programmer to ensure that the commons are being
merged properly.

If the external module indication includes a library idf,
and the DECK parameter has been specified, the idf is
ignored.

FLACC performs automatic serialization of all external
calls. Thus, in a parallel environment, when one task calls
an external subroutine, all other tasks under FLACC
jurisdiction are suspended until control is returned to the
FLACC environment.

35

10. Exception Handling

10.1. Introduction

This section describes the FLACC exception handling
extension.

FLACC provides a basic facility for recovering from
run-time errors.

Here is a simple example:

BEGIN
on error(overflow exception, ovf);
i := j • k
EXIT
ovf: i : = maxint

END

A handler is set up by calling on error, typically with a
standard prelude tag and a label. When an error
associated with the tag occurs, it is trapped, and the
program jumps to the label. Note that using EXIT allows
the handler to substitute a value for the interrupted clause
or expression. (Note there is no semicolon either
preceeding or following the EXIT.) It is not possible to
resume interrupted code.

10.2. New Indicants The FLACC exception handling extension defines three
new procedures, a mode, and several tags:

MODE EXCEPTION

PROC EXCEPTION new exception

PROC (EXCEPTION, PROC VOID) VOID on error

PROC (EXCEPTION) VOID raise

EXCEPTION any exception

EXCEPTION bounds exception

EXCEPTION deadlock exception

EXCEPTION divide by zero exception

EXCEPTION memory limit exception

EXCEPTION overflow exception

EXCEPTION range exception

EXCEPTION transput exception

EXCEPTION underflow exception

36

10.3. Non
Interceptible
Errors

new exception is used to create new (user-declared) excep
tion values. Normally these are bound in an identity
declaration to a tag.

on error is used to set up a trap for an exception. Its
second parameter is a PROC VOID; labels are procedured
as needed.

raise is used to raise an exception. Most exceptions are
raised implicitly by the run-time system, but user-declared
ones must be raised explicitly by calling raise. Standard
exceptions (such as overflow exception) may also be raised
by calling raise.

any exception, as its name implies, can be used to trap
any exception. A handler for any exception will be used if
there is no more specific handler available. In this sense
it is like an OUT in a CASE clause.

transput exception can be used to trap any error arising
during transput. This includes opens which fail,
conversion errors, end of file, set errors, etc.

overflow exception, underflow exception, and divide by zero
exception are most useful in machine-portable numeric
software.

bounds exception includes all errors arising from slicing
rows, such as bounds mismatches during assignation, and
subscripts out of range.

range exception includes all out-of-range arguments to
prelude procedures and operators, such as REPR, Ipad, sin,
etc.

deadlock exception and memory limit exception do the
obvious things.

There are five 'mortal errors'; line limit exceeded, page
limit exceeded, time limit exceeded, an exception raised
which has no handler, and an exception handler returning
rather than jumping.

1004. Range of
Handlers

10.5. Invocation of
Handlers

37

A handler is in effect for the range corresponding to its
necessary environ. When labels are used, this environ is
the environ in which the label is defined. It may be
different if on error is called with a procedure rather than
a label, depending on what non-local tags the procedure
references.

Exception handlers may be nested, but note that the
nesting corresponds to the necessary environs of the
handlers, and not the environs of the calls to on error.
For example, consider:

BEGIN # environ 1 #

BEGIN # environ 2 #

on error(any exception, exit2);
BEGIN # environ 3 #

on error(any exception, exit1);

END; # environ 3 #
exit2: ...

END; # environ 2 #

exit1: ...
END # environ 1 #

The first handler (exit2) is in effect from the first call of
on error to the end of environ 2, whereas the second
handler (exit 1) is in effect from the end of environ 2 to
the end of environ 1. This is because the more local
handler masks the more global one. Had the handlers
been for different exceptions (and the first one not been
for any exception), then the second handler (exit1) would
have been in effect from the second call of on error to the
end of environ 1.

If two handlers are set up for the same exception and the
same environ, the later one replaces the earlier one. Once
a handler is set up, it can be replaced, but it is not
possible to revert to the 'no handler' state without leaving
the handler's necessary environ.

Before a handler is invoked, all environs more local
(newer) than the necessary environ are released. This may
involve returning from calls, and terminating parallel
clauses, that are more local than the handler's necessary
environ. Note that, as expected, handlers are inherited by
calls.

38

10.6. User-Defined
Exceptions

10.7. A More
Structured
Approach

When a handler for an environ is invoked, all handlers for
that environ are reset. Thus, to trap (locally) a second
exception inside a handler, on error must be called after
the handler for the first exception is entered.

User-defined exceptions can be defined like this:

BEGIN
EXCEPTION singular exception = new exception;
PROC invert = ...

... raise(singular exception); ... ;
BEGIN

on error(singular exception, singular);
invert(...)
EXIT
singular:

END
END

For those who find labels and jumps distasteful, it is
possible to define a more structured way of handling
exceptions. This involves defining an operator which takes
a 'suspect' procedure together with a handler specification.
The handler specification might be a two field structure
display, consisting of the exception expected, and a
procedure to handle it. For example:

MODE ERROR = STRUCT(EXCEPTION e, PROC VOID
h);

MODE TRY = VOID, USE = VOID;
PRIO ON = 1;
OP ON = (PROC VOID suspect, ERROR handler) VOID:
BEGIN

END

on error(e OF handler, error);
suspect
EXIT
error: h OF handler

There are a few clever tricks used here. Because a struc
ture display cannot be an operand, it must appear as a
cast. Thus a call to ON is written as ON ERROR. Also,
PROC VOID values are not called when used as parameters,
but are called when free-standing as clauses. TRY and
USE are used to improve readability.

This facility might be used in the following way:

39

(TRY: i : = j • k)
ON ERROR(overflow exception, USE: i : = maxint)

The parentheses around the suspect procedure are required
by the language syntax (routine texts are not operands).

Of course, a more elaborate scheme could be invented
using a list of exceptions and handlers instead of just one.

40

11. Output from the System

11.1. Parameter
Values

11.2. The Source
Listing

This section describes the output that FLACC produces.

When the NOTERSE parameter is specified (Section 8), the
operating system interface starts each run with a banner
identifying the version of FLACC and the installation copy
number and name.

The ICOMPILE line, if any, is shown next. If there are
errors in this line, they follow, provided that the NOTERM
parameter (Section 8) is in effect. If TERM is in effect,
errors are sent to the terminal, rather than the listing.

The parameter values for the run are given next.
Following this is a line saying how much memory has been
allocated for the run.

None of this output (except for error messages about bad
parameters) appears if TERSE i6 in effect.

FLACC source listings are quite elaborate.

At the top of each page, two (double spaced) lines are
reserved for the current title and subtitle. If no ITITLE or
ISTITLE lines are used, then these two lines are left blank,
except for the page number, and the time and date of the
compilation, which appear at the right-hand end.

Within the body of a page in the listing, there are five
fields. These are the error flag, the source line number,
the coordinate line number, the nesting depth, and the
source text.

The error flag (if any) appears as three asterisks (***) at
the left-hand side of the page. Only lines which evoke
error or warning messages have error flags. For each error
or warning, there is an underscore (_) in the source text
field to point at the text in error, unless an OUTFORM
value of 3 or 4 is used (requesting underlining of bold
words), in which case a point (.) is used instead.

Source line numbers appear in columns 4 through 13. In
MTS, these are the line numbers in the source file. In
OS, VS and CMS, these may be blank, or may be the
sequence fields from the flource dataset, provided that the
INFORM parameter has been set appropriately, and the

41

editor has been instructed to number the dataset. See the
description of INFORM in Section 8.

Column 14 will normally be blank, but will contain a
minus sign (-) if the line was included as a result of a
IINCLUDE line. If the NOLlBLIST parameter is in effect,
such lines are not listed.

Columns 15 through 19 contain the source line coordinate.
This value (which can be easily recognized because of its
leading zeros) is used by both the compiler and the
run-time system to identify the line. It is used in error
messages, the cross-reference, traceback, profile, and dump.

Columns 21 through 31 contain the nesting depth
indication. For each level of nesting encountered on the
line, there is a character in the nesting depth field,
provided the maximum depth does not exceed 10. The
outermost layer of the program has a depth of O. For
each BEGIN, IF, CASE, FOR (or other bold word starting a
loop), (, or [, the nesting depth is increased by one. For
each corresponding END, FI, ESAC, 00,), or), it is
decreased by one. When one or two nesting levels appear
on a line, the appropriate digit(s) are placed in the field.
When more than two appear, only the first and last digits
appear, and the middle ones are replaced with minus signs
(-). When the nesting depth exceeds 10, a plus sign (+)
is put at the right-hand end of the field.

The source text appears in columns 33 through 132. If
the source line is longer than 100 characters, it is split
across as many lines as necessary.

The appearance of the source text depends on the setting
of the OUTFORM parameter. For example, the input line

.BEGIN STOP .END

(in RES mode) would appear in the listing as:

Outfarm setting Appearance

1 (as is) .BEGIN STOP .END
2 (mixed case) BEGIN stop END
3 (upper underlined) .EtE-Glli. STOP ENJ~
4 (lower underlined) b.l:lmn stop JtnJi
5 (upper overprint 2) BEGIN STOP END
6 (lower overprint 2) begin stop end
7 (upper overprint 3) BEGIN STOP END
8 (lower overprint 3) begin stop end

OUTFORMs of 5 through 8 are recommended only on
well-adjusted line printers or hard-copy terminals.

42

11.3. Mode Table

11.4. Cross
Reference

11.5. Compiler
Error
Messages

Under the control of the MODETABLE parameter, FLACC
will produce a list of all modes used the program. It will
also produce one if the program contains an error which
requires mode information to understand.

Each mode is assigned a number, which is prefixed with a
number sign (#). The table consists of entries, one to a
line, each describing one 'level' of a mode. For example,
the mode [miNT would take three lines, as in:

MODE#1 INT
MODE#20#1
MODE#30#2

Structs, procedures, and union.s are handled similarly. For
example, if a program contains the following modes,

INT
STRUCT(lNT a, b)
PROC(lNT a, b)INT
UNION(lNT, STRUCT(lNT a, b»

then the mode table might be:

MODE#1 INT
MODE#2 STRUCT(# 1 A,# 1 B)
MODE#3 PROC(#1,#1)#1
MODE#4 UNION(# 1 ,#2)

Refs, transient refs, and flexes are also broken out as
separate lines in the mode table.

The mode numbers in the mode table are referred to by
the cross-reference, by the post-execution dump, and by
both compiler and run-time error messages.

Under control on the XREF parameter, FLACC will
produce a tag cross-reference.

For each tag in the program, the name, mode, defining
line, and referenced line(s) appear. Each separately
declared version of each tag is individually
cross-referenced.

All compiler error and warning messages appear together
at the end of the listing. These are sorted by line
number.

Each message consists of five fields: the level of severity,
the source coordinates, the error message number, the
mode number, and the text of the message.

11.6. Compilation
Summary

11:7. Terminal
Messages

43

The severity level is either W or E to indicate a warning or
an error.

The source coordinates are two numbers: a line number
and a character number, enclosed in parentheses. For
example, (00010,00034). Some errors are not associated
with any particular source location. These appear last,
and have blank coordinate fields.

The mode number field appears only if the error has
something to do with a mode, such as a mismatch between
a parameter and an argument in a call. If it does appear,
the text of the message refers to it if there is any
confusion about which mode is involved in the error.

At the end of the listing, FLACC gives a summary line of
the compilation. This contains the version number of
FLACC (in case TERSE is specified), the number of errors
detected during the compilation, the work space the
compiler used, and how much object code was produced.

When the TERM parameter is in effect, then some
messages are sent to the terminal in addition to those sent
to the listing.

Any errors in parameter lists (or on /COMPILE lines) will
evoke messages at the terminal.

Compiler error and warning messages are also sent to the
terminal. These have a very different format from those
in the listing. Preceeding each message, the affected
source line is sent to the terminal, in 65-character pieces.
Dollar signs ($) are used to mark error locations. The
source line number is given, or, if this has not been
supplied by the operating system interface, the source
coordinate is given instead. On a separate line, the
severity level is given (either E or W), together with the
mode number (if any), and the error message.

Compiler error messages not associated with any particular
line are given last, separated from any previous messages
by a line of dashes.

At the end of the compilation, the compiler summary line
is sent to the terminal.

44

11.8. Run-time
Error
Messages

11.9. Traceback

When the program terminates abnormally, the source
coordinates of the error are given together with an error
message detailing the fault.

In load-and-go mode (that is, when NODECK and RUN
have been specified), the source line is also given, unless
the error occurs in a transput routine, such as read. A
marker indicates the exact point of the error.

Following the error message is a line summarizing the
amount of cpu time used in the run, and the number of
storage regenerations (garbage collects) performed.

Provided that DUMP is at least 1 (EDUMP in the event of
abnormal termination), a traceback through all active
environs is given.

The traceback begins with the newest environ (the one
most recently entered), and proceeds outward to the
primal environ.

There is one line for each active environ. It consists of a
coordinate, a locale item number, and a locale name. The
initial coordinate is the point of termination. This
remains unchanged through nested environs until the
outermost environ of a procedure is reached. The
coordinate used on the next line is the point of the call to
the procedure. This continues back through calls until the
primal environ is reached.

Each locale is given a unique item number which is used
in the dump (see below). Each locale also has a name,
which always includes the coordinates of its beginning,
and, in the case of procedures, the name of the procedure.

There is a separate trace hack for each task that is active
at termination. These are simply numbered, starting at 1.
Each traceback starts at the coordinates where termination
occurred, and goes back towards the primal environ.
When the traceback of some task merges with a previous
task (at the PAR BEGIN clause), a message appears stating
which task it merges with, and the remainder of the
merged task's traceback is suppressed. The last line of
the merged task's traceback is a duplicate of some line of
the earlier task's traceback.

11.10. Level 2
Symbolic
Dump

11.11. Level 3
Symbolic
Dump

45

When the DUMP value is 2 (EDUMP in the case of
abnormal termination), an abbreviated dump of active
storage at termination is given.

Each locale is given a unique item number. Item numbers
are always prefixed with an at sign (@). The primal
environ is always @1. Item numbers can be thought of as
addresses. The item numbers in the dump correspond to
those in the traceback.

The dump is ordered by increasing item number. These
need not correspond to the age or nesting of the locales,
because storage regenerations (garbage collections) can
cause new locales to be placed among old ones.

The level 2 dump consists of a block of information for
each locale. This starts with the locale item number, and
its name. Then, provided it is not the primal environ, the
item number of the next older locale is given. This
chaining of locales corresponds to the traceback.
Following this, the values of tags declared in the locale are
given.

Depending on the mode, an actual value may be given, or
just the mode number (see Mode Table description above).
If the mode is INT, REAL, COMPl, short or long versions of
these, BOOl, CHAR, SEMA, []CHAR, STRING, or REF or
UNION of any of these, then the value is printed. Note
that complete dereferencing is done.

If a value is uninitialized, or a declaration has not been
elaborated, the tag is called UNDEFINED. In the case of
strings, any undefined characters are printed as question
marks (?), and a note is appended saying some characters
are undefined.

Note in particular that rows of other than characters, and
all structs, appear only as mode numbers.

When the DUMP value is 3 (EDUMP in the case of
abnormal termination), a detailed dump of active storage
at termination is given.

Each value is given a unique item number, which is
prefixed with an at sign (@). The primal environ is
always @1. Item numbers can be thought of as addresses.
The item numbers of locales in the dump correspond to
those in the traceback.

The dump is ordered by increasing item number. These

46

need not correspond to the age or nesting of the values,
because storage regenerations (garbage collections) can
cause new values to be placed among old ones.

Locales are dumped as a collection of lines, the first giving
the item number and name of the locale, as they appear in
the traceback. The next line (unless it is the primal
environ) gives the item number of the next older locale.
This chain corresponds to the traceback. Next, any tags
declared in the locale are given, one per line. These lines
consist of a tag and an item number. After the tags,
values contained within the locale are dumped as separate
items, one per line.

An item is always dumped as an item number, the first
word of the mode spelling together with a mode number in
parentheses, and a value. Item numbers are always
prefixed by at signs (@), and mode numbers are always
prefixed by number signs (#). Thus a typical item looks
like:

35 (lNT# 1) 23

A value is dumped variously depending on its mode.

Uninitialized or as yet undeclared values (ones whose
locale has been allocated, but whose declarations have not
been elaborated) are given as UNDEFINED.

Since united values do not exist per se, the value of a
UNION is treated as though it is of its current value's
mode.

INT, REAL, BITS, BYTES, long and short versions of these,
BOOl, and STRING values are given as denotations. Note
that strings are distinguished from rows of characters.

Only the mode is given for FORMAT, FilE, CHANNEL and
EMPTY values.

EXCEPTION values are given as integers.

PROC values consist of the tag the procedure denotation
was ascribed to, if any, together with the coordinates of
the beginning of the procedure denotation. If the
denotation was not ascribed (it may be assigned instead),
or was not ascribed to a tag (it may be ascribed to a field
of a struct, or passed in a call, for instance), then no tag
is given.

A REF value consists of a points-at symbol (- - >)
followed by the item number of the value it refers to. For
example, a REF INT tag i could appear as follows in the

dump of the locale:

@5 LOCALE OF (00001,00001)
PREVIOUS LOCALE @1
1@6

@6 (REF#2) - - > @7
@7 (INT#1) 2

If the ref is null, then NIL appears instead.

SEMA values appear as refs that point at integers.

47

STRUCT values are broken open much like locales, except
that each field is not put on a new line. The field names
are given in order as a tag followed by an item number.
The field values follow the field names as separate items.
For example, a STRUCT(INT a,b) might appear as:

@42 (STRUCT#5) A@43 B@44 @43 (INT#1) @44
(INT#1) 2

Row values consist of two parts. The first is the row
value, which is a descriptor. The second is the bunch,
which is the collection of values the row accesses. The
row value is given in two parts: the mode, which includes
the bounds of the row; and the mapping, which consists of
sets of subscript values and the item number that they
access. For example, a [2] INT might appear as:

@52 (ROW#4 1:2) (1)@96 (2)@97

The bunch, which usually appears in a separate place in
the dump, might look like:

@96 (lNT) 5 @97 (lNT) -3

A flat row (one with a lower bound that is greater than
the corresponding upper bound) is treated specially. RR
requires that a 'ghost' element be allocated so that bounds
checking can 'look past' the flat row to the element in the
row of row case. In the case of a flat row of integers, the
following might be given:

@12 (ROW#5 1:0) FLAT @66

@66 (GHOST) (INT#1) 0

The reason for this elaborate and very detailed format of
dump is to explicitly show all of the mappings of names
(refs), structs and rows onto values. In particular, where
subnames exist, as in slices of rows, row selections from
rows of structs, field selections from structs, or simple
ascriptions such as ref parameters, the dump shows them.

48

11.12. Branch
Trace

11.13. Execution
Profile

FLACC keeps a small (30 entry) table of the most recent
branches taken during program execution. These branches
occur in IF and CASE clauses, in loops, during calls, and,
of course, during gotos.

This table allows you to see where the program 'came
from' immediately prior to termination.

It appears if the value of DUMP (or EDUMP in the case of
abnormal termination) is at least 1.

Each entry in the table consists of a source coordinate.
Thus a (very short) table might look like:

(00005,00008)- >(000 10,00017)- >(00000,00000)

The last value in the table is always zero.

When the PROFILE parameter is in effect, FLACC counts
how many times each 'branch point' in the program is
passed (see Branch Trace, above).

After termination, a bar graph is given showing each
branch point encountered, its count, the ratio of this count
to the maximum one found (given as a percentage), and a
histogram of asterisks (*). Each branch point is given on
a separate line.

49

Appendix A: Standard Prelude

All operators, tags and routines defined in RR are
supported by FLACC, although some representations of
some operators are not. This appendix lists (in EBCDIC
order) all standard prelude tags, routines and operators
defined in FLACC. Any that are marked with * are not
defined in RR. Each indicant not defined in RR is
explained following the list.

Occurrences of L represent sets of LONG and SHORT, and
occurrences of I are sets of long and short. That is, LINT
means INT, LONG INT, SHORT INT, etc.
<
<=
+
+*
+:=
+=:

**

1;=

/=

%
%*
%*:-=

%:=
>
>=

* any exception
I arccos
I arcsin
I arctan
associate
backspace
bin possible
bits lengths
I bits pack
bits shorths
I bits width
blank

• bounds exception
bytes lengths
I bytes pack
bytes shortl)s
I bytes width
chan
char in string
char number

* clipline
close
compressible

* convert
I cos

*1 cot
* cpu time

create
* date

* deadlock exception
• divide by zero

exception
* I e

errorchar
estab possible
establish
I exp
I exp width
fixed
flip
float
flop
get
get bin
get possible
gell
int lengths
int shorths
I int width
I last random
line number
I In

* I In 10
lock

'Ipad
make conv
make term
max abs char
I max int
I max real

'memory limit
exception

'new exception
newline
newpage
I next random
null character
on char error

* on error
'on file end

on format end
on line end
on logical file end
on page end
on physical file end
on value error
open

'overflow exception
page number

I pi
print

* printer channel
prinll
put
put bin
put possible
pull

* raise
I random

* range exception
read
read bin
readf
real lengths
real shorths
I real width
reidf
reidf possible
reset
reset possible

* return code
*rpad
* sameline
* scientific

scratch
* sequential channel

set
set char number
set possible

* set return code
I sin
I small real
space
I sqrt
stand back
stand back channel
stand in
stand in channel
stand out
stand out channel
standconv
stop
I tan

* time of day
* trace
, tracef
'trace flag
'transput exception
* underflow exception

whole
write
write bin
writef
ABS
AND
ARG

• ASSERT
BIN
CONJ
DIVAB
DOWN
ELEM
ENTlER
EQ

* EXCEPTION
GE
GT
I
1M
LE
LENG
LEVEL
LT
LWB
MINUSAB
MOD
MODAB
NE
NOT
ODD
OR
OVER
OVERAB
PLUSAB
PLUSTO
RE
REPR
ROUND
SHL
SHORTEN
SHR
SIGN
TIMESAB
UP
UPB

50

any exception (EXCEPTION) allows the program to recover
from (almost) any error. See Section 10.

bounds exception (EXCEPTION) allows the program to
recover from a bounds error. See Section 10.

clipline (PROC (REF FILE) VOID) is used on random access
files. It truncates the current line to the current position,
but performs no other action. Thus lines can be
shortened by calling clipline then newline (or some other
layout routine), or lengthened by calling clipline, then put,
then newline (or some other layout routine).

convert (PROC (?NUMBER) STRING) converts its argument
to its 'most readable' string representation. This is a very
useful intermediate level of output formatting, especially
when used in free-format messages, or in conjunction with
Ipad.

cot (PROC (L REAL) L REAL) is the multiplicative inverse
of tan.

cpu time (PROC INT) returns the number of milliseconds of
CPU time that the program has used since it started exec
ution.

date (PROC STRING) returns a string of the form
DD/MMM/YY, where DO is the day, MMM is the month,
and YY is the year (for example, 031 JULl6S).

deadlock exception (EXCEPTION) allows the program to
recover from deadlocks in parallel clauses. See Section 10.

divide by zero exception (EXCEPTION) allows the program
to recover from division errors. See Section 10.

e (L REAL) is 2.71828

In 10 (L REAL) is In(10).

Ipad (PROC (STRING, INT, CHAR) STRING) pads its first
argument to the length given by its second argument,
using the character given by its third argument. Padding
occurs on the left. If the string is already long enough, no
action is taken.

memory limit exception (EXCEPTION) allows the program to
recover from exhausting its available work space. See
Section 10. Unless memory runs out because a row or
struct is too large, at least one environ must be abandoned
so that some space is available for the program to
continue.

51

new exception (PROC EXCEPTION) creates a new exception
value. See Section 10. new exception is normally used in
a declaration.

on error (PROC (EXCEPTION, PROC VOID) VOID) IS used to
set up exception handlers. See Section 10.

on file end (PROC (REF FILE, PROC (REF FILE) BOOL)
VOID) combines the functions of on logical file end and on
physical file end.

overflow exception (EXCEPTION) allows the program to
recover from arithmetic overflows. See Section 10.

printer channel (CHANNEL) is an additional channel
(Section 6) which supports only sequential output, as well
as overprinting and page skipping.

raise (PROC (EXCEPTION) VOID) IS used to raise an excep
tion. See Section 10.

range exception (EXCEPTION) allows the program to
recover from out-of-range arguments to standard prelude
routines. See Section 10.

return code (PROC INT) yields the return code of the last
external routine called. See Section 9.

rpad (PROC (STRING, INT, CHAR) STRING) pads its first
argument to the length given by its second argument,
using the character given by its third argument. Padding
occurs on the right. If the string is already long enough,
no action is taken.

sameline (PROC (REF FILE) VOID) is used for overprinting.
To overprint two lines, write the first line, then sameline,
then the second line, and finally newline.

scientific (PROC (?NUMBER, INT) STRING) converts its first
argument to a string in scientific notation, with the
number of digits specified by its second argument. This is
not the same as float, which may return more than one
digit before the decimal point.

sequential channel (CHANNEL) is an additional channel (see
Section 6) which supports sequential input and output.

set return code (PROC (lNT) VOID) sets the return code
that FLACC will give on completion of the run.

time of day (PROC STRING) returns a string of the form
HH:MM:SS, where HH is the hour (24 hour clock), MM is
the minute, and SS is the second (for example, 14:22:55).

52

trace (same mode as print) is used for tracing. It produces
output only when trace flag is TRUE. Its output is sent to
standout.

tracef (same mode as printf) is used for tracing. It
produces output only when trace flag is TRUE. Its output
is sent to standout.

trace flag (REF BOOl) controls whether trace and tracef
produce output.

transput exception (EXCEPTION) allows the program to
recover from errors during transput. See Section 10.

underflow exception (EXCEPTION) allows the program to
recover from arithmetic underflows. See Section 10.

ASSERT (PROC (BOOl) VOID) is a unary operator. It
terminates execution if its argument is FALSE, and does
nothing if it is TRUE.

EXCEPTION (mode indicant) is a mode used for exception
handling. See Section 10.

Barry J. Mailloux was a driving force in the development of the Algol 68 language.

Aad van Wijngaarden charged Barry with the heavy responsibility of ensuring that
Algol 68 was a practical design, one that could be implemented efficiently on the
computers of the day.

Barry’s 1968 doctoral dissertation “On the Implementation of Algol 68” addressed all of
the key issues:
 • multi-pass compilation strategy,
 • symbol table organization,
 • object code structure,
 • run-time memory management, and
 • run-time representation of modes.

When Barry returned to the University of Alberta as an Assistant Professor, he made it
his mission to see that plan realized.

Barry was a fabulous mentor and a source of constant encouragement during the
development of FLACC. He caused it all to happen in so many ways.

We hope that FLACC will be remembered as “Mailloux’s Algol 68” – Chris & Colin

In Loving Memory of Barry Mailloux

	FLACC User Guide 1V6.pdf
	FLACC006
	FLACC004
	FLACC005

